Friday, May 13, 2011

Kognitive Koncepts

This is the most condensed source of interesting ideas, spanning multiple disciplines and all described succinctly and for the layman, that I've read in a long time. It's a bunch of scientists responding to the question, "What one scientific concept would improve everbody's cognitive toolkit?" I hate the word "toolkit" as it reminds me of marketing-speak ("software solution"), but the idea is to talk about a concept that, if better understood or more widely known, could make us better and more effective thinkers/humans. Here are some excerpts:

Seth Lloyd, a quantum mechanical engineer at MIT:
I can't say that I'm very optimistic about the odds that people will learn to understand the science of odds. When it comes to understanding probability, people basically suck. Consider the following example, based on a true story, and reported by Joel Cohen of Rockefeller University. A group of graduate students note that women have an significantly lower chance of admission than men to the graduate programs at a major university. The data are unambiguous: women applicants are only two thirds as likely as male applicants to be admitted. The graduate students file suit against the university, alleging discrimination on the basis of gender. When admissions data are examined on a department by department basis, however, a strange fact emerges: within each department, women are MORE likely to be admitted than men. How can this possibly be?

The answer turns out to be simple, if counterintuitive. More women are applying to departments that have few positions. These departments admit only a small percentage of applicants, men or women. Men, by contrast, are applying to departments that have more positions and that admit a higher percentage of applicants. Within each department, women have a better chance of admission than men — it's just that few women apply to the departments that are easy to get into.

This counterintuitive result indicates that the admissions committees in the different departments are not discriminating against women. That doesn't mean that bias is absent. The number of graduate fellowships available in a particular field is determined largely by the federal government, which chooses how to allocate reserach funds to different fields. It is not university that is guilty of sexual discrimination, but the society as a whole, which chose to devote more resources — and so more graduate fellowships — to the fields preferred by men.
Fiery Cushman (what a name), post-doctoral fellow in mind/brain/behavior at Harvard:
Some of the most famous examples of confabulation come [from] "split-brain" patients, whose left and right brain hemispheres have been surgically disconnected for medical treatment. Neuroscientists have devised clever experiments in which information is provided to the right hemisphere (for instance, pictures of naked people), causing a change in behavior (embarrassed giggling). Split-brain individuals are then asked to explain their behavior verbally, which relies on the left hemisphere. Realizing that their body is laughing, but unaware of the nude images, the left hemisphere will confabulate an excuse for the body's behavior ("I keep laughing because you ask such funny questions, Doc!").

Wholesale confabulations in neurological patients can be jaw-dropping, but in part that is because they do not reflect ordinary experience. Most of the behaviors that you or I perform are not induced by crafty neuroscientists planting subliminal suggestions in our right hemisphere. When we are outside the laboratory — and when our brains have all the usual connections — most behaviors that we perform are the product of some combination of deliberate thinking and automatic action.

Ironically, that is exactly what makes confabulation so dangerous. If we routinely got the explanation for our behavior totally wrong — as completely wrong as split-brain patients sometimes do — we would probably be much more aware that there are pervasive, unseen influences on our behavior. The problem is that we get all of our explanations partly right, correctly identifying the conscious and deliberate causes of our behavior. Unfortunately, we mistake "party right" for "completely right", and thereby fail to recognize the equal influence of the unconscious, or to guard against it.

A choice of job, for instance, depends partly on careful deliberation about career interests, location, income, and hours. At the same time, research reveals that choice to be influenced by a host of factors of which we are unaware. People named Dennis or Denise are more likely to be dentists, while people named Virginia are more likely to locate to (you guessed it) Virginia. Less endearingly, research suggests that on average people will take a job with fewer benefits, a longer commute and a smaller income if it allows them to avoid having a female boss.
David Eagleman, Assistant Professor of Neuroscience at Baylor College of Medicine:
In 1909, the biologist Jakob von Uexküll introduced the concept of the umwelt. He wanted a word to express a simple (but often overlooked) observation: different animals in the same ecosystem pick up on different environmental signals. In the blind and deaf world of the tick, the important signals are temperature and the odor of butyric acid. For the black ghost knifefish, it's electrical fields. For the echolocating bat, it's air-compression waves. The small subset of the world that an animal is able to detect is its umwelt. The bigger reality, whatever that might mean, is called the umgebung.

The interesting part is that each organism presumably assumes its umwelt to be the entire objective reality "out there." Why would any of us stop to think that there is more beyond what we can sense? ... Our unawareness of the limits of our umwelt can be seen with color blind people: until they learn that others can see hues they cannot, the thought of extra colors does not hit their radar screen. And the same goes for the congenitally blind: being sightless is not like experiencing "blackness" or "a dark hole" where vision should be. As a human is to a bloodhound dog, a blind person does not miss vision. They do not conceive of it. Electromagnetic radiation is simply not part of their umwelt.

The more science taps into these hidden channels, the more it becomes clear that our brains are tuned to detect a shockingly small fraction of the surrounding reality. Our sensorium is enough to get by in our ecosystem, but is does not approximate the larger picture.

I think it would be useful if the concept of the umwelt were embedded in the public lexicon. It neatly captures the idea of limited knowledge, of unobtainable information, and of unimagined possibilities. Consider the criticisms of policy, the assertions of dogma, the declarations of fact that you hear every day — and just imagine if all of these could be infused with the proper intellectual humility that comes from appreciating the amount unseen.
Beatrice Golomb, Professor of Medicine at UCSD:
Key presumptions regarding placebos and placebo effects are more typically wrong than not.

1. When hearing the word "placebo," scientists often presume "inert" - without stopping to ask: what is that allegedly physiologically inert substance? Indeed, even in principle, what could it be??

There isn't anything known to be physiologically inert. There are no regulations about what constitute placebos; and their composition — commonly determined by the manufacturer of the drug under study — is typically undisclosed. Among the uncommon cases where placebo composition has been noted, there are documented instances in which the placebo composition apparently produced spurious effects. Two studies used corn oil and olive oil placebos for cholesterol-lowering drugs: one noted that the "unexpectedly" low rate of heart attacks in the control group may have contributed to failure to see a benefit from the cholesterol drug. Another study noted "unexpected" benefit of a drug to gastrointestinal symptoms in cancer patients. But cancer patients bear increased likelihood of lactose intolerance — and the placebo was lactose, a "sugar pill." When the term "placebo" substitutes for actual ingredients, any thinking about how the composition of the control agent may have influenced the study is circumvented.

2. Because there are many settings in which persons with a problem, given placebo, report sizeable improvement on average when they are re-queried (see 3), many scientists have accepted that "placebo effects" — of suggestion — are both large in magnitude and widespread in the scope of what they benefit.

The Danish researcher Asbjørn Hróbjartsson conducted a systematic review of studies that compared a placebo to no treatment. He found that the placebo generally does: nothing. In most instances, there is no placebo effect. Mild "placebo effects" are seen, in the short term, for pain and anxiety. Placebo effects for pain are reported to be blocked by naloxone, an opiate antagonist — specifically implicating endogenous opiates in pain placebo effects, which would not be expected to benefit every possible outcome that might be measured.

3. When hearing that persons with a problem placed on a "placebo" report improvement, scientists commonly presume this must be due to the "placebo effect" - the effect of expectation/suggestion.

However, the effects are usually something else entirely. For instance: natural history of the disease, and regression to the mean. Consider a distribution, such as a bell-shape. Whether the outcome of interest is pain, blood pressure, cholesterol, or other, persons are classically selected for treatment if they are at one end of the distribution - say, the high end. But these outcomes are quantities that vary (for instance from physiological variation, natural history, measurement error...), and on average the high values will vary back down — a phenomenon termed "regression to the mean" that operates, placebo or no.

1 comment:

  1. This comment has been removed by the author.